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ABSTRACT 

This paper addresses the use of a hybrid algorithm for detecting aircraft noise events using noise data. The 

algorithm uses two complementary methods. The first method considers the temporal history of typical 

acoustic descriptors while exceeding specific thresholds. In the other hand, the second method uses Artificial 

Neural Networks to discriminate whether the detected noise event actually correspond to an aircraft operation. 

The methods were validated using real data from continuous noise monitoring measurements in the vicinity 

of the Santiago International Airport SCEL, in Chile. 

1. INTRODUCTION 

Due to the high noise impact caused by aircraft operations in the vicinity of airports, long-term 

noise monitoring procedures are addressed in several regulations and technical standards, establishing 

guidelines and minimum requirements regarding the measurement equipment, the selection 

monitoring points, the content and frequency of the monitoring system reports, among other things.  

To calculate noise levels from an airport at a particular receiver, with the objective of evaluating the 

impact they have, it is essential to have a high precision system for continuous noise monitoring. 

With the goal to develop an alternative method capable to obtain a high performance on the 

detection of aircraft noise events, this study presents the use of an algorithm that integrates two 

methods. The results are compared to the information contained in the official flight logs of the 

Santiago International Airport (SCEL). The measurements were conduced at a point located in a 

residential area 12 km to the south of the airport. 
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2. THEORY AND METHODS 

2.1 ACOUSTIC DESCRIPTORS 

The use of specific acoustic descriptors allows the identification, definition and classification of 

noise sources. Considering this, the measured descriptors were the Equivalent Continuous Noise Level 

LEQ in dB(A), dB(C) and dB(Z); Maximum Sound Pressure Level Lmax Slow in dB(A), dB(C) and 

dB(Z), and the Peak Sound Pressure Level Lpeak in dB(A) and dB(Z). In addition, one-third Octave 

Band values between 50 and 10 kHz in dB(Z) were considered. This frequency range is often used to 

analyse aircraft noise sources [1]. Furthermore, the Sound Exposure Level SEL in dB(A) was assessed 

and used as well.  

The mentioned descriptors combined with their respective durations in seconds completed a total of 

65 parameters that were used as inputs to a feed-forward Artificial Neural Network.  

2.2 MONITORING POINT 

The noise monitoring point is called “Huentelenfú” and it is located in the neighbourhood of Maipú 

12 Km. to the south of the Santiago International Airport SCEL, as presented in Figure 1.  

 

 

Figure 1 – Location of the noise monitoring point 

 

The noise monitoring terminal (NMT) consists of a weatherproof microphone unit B&K type 4184 

with its respective windshield and anti-bird spikes mounted on a robust pole in a residential area. The 

microphone unit is positioned at a height of six (6) meters on the ground. .  

For this study, it was used noise data registered during three (3) days of continuous measurement, 

between December 23
th

 and 25
th

, 2012. 

2.3 REFERENCE METHOD: FLIGHT LOGS 

In order to quantify the effectiveness of the methods proposed along this study, the obtained results 

were compared with the official flight logs during the observed days. 

For the data analysis military and civilian operations were omitted [1]. The civilian operations 

consisted mainly of small aircraft and helicopter operations. In addition, only take-off operations on 

thresholds 17L and 17R were taken into account. This condition considers all the operations carried 

out in the direction north-south as presented in Figure 2. 

A summary of the number of operations registered in the official flight logs during the observed 

period is shown in Table 1. 

The observed fleet consisted of Airbus (67.6%), Boeing (30.2%), Embraer  (1.5%) and McDonnell 

Douglas aircraft (0.7%), where the model Airbus A320-200 presented the largest number of events 
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with a 46.7% of the total. 

 

Table 1 – Details of the number of events and their distribution per day 

 Analysed day (yyyy.mm.dd)  
Total 

Description Su 2012.12.23 Mo 2012.12.24 Tu 2012.12.25 

N° of events 167 141 150 458 

Percentages 36.5% 30.8% 32.8% 100% 

 

Figure 2 – Direction of departures from the runways 17L and 17R. 

2.4 NOISE EVENT DETECTION METHOD 

This method considers a multiple threshold-triggering to detect noise events. For doing this, the 

variability of the acoustic descriptors is evaluated over the time by means of the changing rate between 

a current value a(t) and the h
th

 previous sample, a(t-h), this relation is defined by Equation 1. 

h

htata

t

ta )()()( 
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Where h is in seconds and a(t) is an acoustic descriptor. For this work, a(t) is the LEQ, 1s, in dB(A). 

This means that a noise event will be detected only if its duration is longer than h seconds [3]. 

For detecting an event, a first order IIR filter defined by a smoothing coefficient [4] has to be 

applied to the derivative of the noise levels and then by using 3 thresholds (Th, TL1 and TL2,) the start 

and the end of the event can be defined, as shown in the as shown in the example of the Figure 3. 

The parameters Th, TL1 and TL2, depends on the acoustic descriptor in use and the nature of the event. 

In this study, to determine the threshold values an empirical calibration process was done.  

The h value was obtained considering the parameter t10 [5], which is explained in section 2.4.1.
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Figure 3 – Noise event detected by using a multi-threshold triggering method. Pictures taken from [3]. 

2.4.1 DETERMINING THE T10 VALUE 
The t10 is defined as the time at which the instantaneous level of a given event is not less than 10 dB 

of its maximum level. The value is obtained using the flyover speed, flyover altitude and the distances 

before, during and after the monitoring point (between s and 3 times s) as sketched in Figure 4. 

Considering the distance between the take-off thresholds 17L and 17 R and the noise monitoring 

point corresponding to 12,719 and 13,292 metres respectively and knowing the altitudes (between 

1,100 and 1,800 metres) as well as the average speed of the flyovers operations (between 435 and 520 

km/h), it was possible to assess the average time duration for aircraft noise events. This average time 

duration took into account the airplanes with the highest number of annual operations at the SCEL 

Airport [8]. In this way, the obtained t10 values were between 52 and 57 seconds, thus the average value 

of 55 seconds was used as an estimate of the h constant required by the detection method. Both the 

altitude and speed information were taken from the INM database
2
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Figure 4 – Example of a flight path showing the direction of the wave fronts reaching the monitoring site 

located at point 2. Figure taken from [5].  

2.5 AIRCRAFT / NON-AIRCRAFT DECISION 

An artificial neural network (ANN) was implemented as a second decision criterion either to 

confirm or to reject the first decision made by the noise detection algorithm.  

The capability of the ANN’s to learn how to relate input-output values by storing a set of numeric 

values gives the possibility to add many simultaneous parameters and therefore to give more 

arguments to make a final decision. 

2.5.1 ARTIFICIAL NEURAL NETWORKS 
The base of an artificial neural network (ANN) lies in the emulation of the processing carried out by 

human neurones to learn how to relate a input parameters to the expected responses allowing a further 

extrapolation of this experience. 

The learning process of an ANN is codified into several numeric vectors and functions related to 

each artificial neuron, generally combined considering simple arithmetic operations (sums and 

products) [6]. 

2.5.2 FEED FORWARD ANN 
A feed forward artificial neural network (FF ANN) corresponds to a topology in which the neuron 

connections are always between contiguous layers. For this study, several configurations of 4-layer FF 

ANN were evaluated. The first or input layer handled the 65 input parameters to the second and third 

layer (hidden layers). The second and third layers used both sigmoid activation functions and they 

consisted of N and M neurons, respectively, were N and M are parameters found during the training 

process. The fourth layer had 1 output neuron with a threshold activation function obtaining an 

Artificial Neural Network for classification ends, where the binary output indicates whether an aircraft 

noise event was detected or not, as shown in Figure 6. 

To train the net was used an optimisation algorithm to obtain the number N and M of neurones in 

each hidden layer. This way is possible to find the optimal configuration of the net which allows 

obtaining the best results. Was used the MATLAB
®

 Neuronal Network Toolbox to work with the ANN, 

considering the training function Scaled Conjugated Gradient, recommended for classification 

problems [7], and its different tools to evaluate the obtained performance.  

2.6 DATA PROCESSING 

The data were divided into 2 groups. The 67.2% of the data, corresponding to the days 1 and 2 

(2012.12.23-24) were used both to calibrate the detection method and for training the Artificial Neural 

Network. The remaining 32.8% of the data were used for evaluating the performance of both methods, 

not only as complementary but also as individual methods. 

All the processes were carried out using an algorithm developed in software MATLAB
®

. This 

algorithm contains different scripts each one with a specific function, for example to load data, to 

apply the detection method, to train and to use the ANN, to compare the results with the information 

from flights log, etc. This way the results and its respective effectiveness are obtained automatically.  
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Figure 5 – Topology and configuration of the ANN used in the noise event detection method. 

3. RESULTS AND ANALYSIS 

3.1 DETECTION PROCESS 

Based on the average event duration t10, the obtained h value was 55 seconds, which was used to 

differentiate the measured LEQ, 1s, in dB(A). The obtained detection thresholds after the calibration 

process for each hour are shown in Table 2. 

Table 2 – Detection thresholds per hour 

Period (hh.mm) Thresholds [dB / s] Period (hh.mm) Thresholds [dB / s] 

Start – End Th TL1 TL2 Start – End Th TL1 TL2 

00.00 – 00.59 0.18 -0.19 -0.18 12.00 – 12.59 0.08 -0.05 -0.04 

01.00 – 01.59 0.13 -0.07 -0.06 13.00 – 13.59 0.08 -0.07 -0.06 

02.00 – 02.59 0.14 -0.15 -0.14 14.00 – 14:59 0.08 -0.04 -0.03 

03.00 – 03.59 0.18 -0.22 -0.21 15.00 – 15.59 0.07 -0.04 -0.03 

04.00 – 04.59 0.13 -0.14 -0.13 16.00 – 16.59 0.09 -0.06 -0.05 

05.00 – 05.59 0.19 -0.16 -0.15 17.00 – 17.59 0.09 -0.06 -0.05 

06.00 – 06.59 0.09 -0.09 -0.08 18.00 – 18.59 0.05 -0.06 -0.05 

07.00 – 07.59 0.08 -0.04 -0.03 19.00 – 19.59 0.06 -0.04 -0.03 

08.00 – 08.59 0.11 -0.02 -0.01 20.00 – 20.59 0.06 -0.04 -0.03 

09.00 – 09.59 0.10 -0.05 -0.04 21.00 – 21.59 0.12 -0.08 -0.07 

10.00 – 10.59 0.09 -0.08 -0.07 22.00 – 22.59 0.07 -0.04 -0.03 

11.00 – 11.59 0.09 -0.08 -0.07 23.00 – 23.59 0.11 -0.14 -0.13 

 

Variations on the detection thresholds were found as a function of the time. These values are 

presented in Table 2. The main factor affecting the thresholds is the background noise which presents 

itself a high sensitivity to the daytime.  

In Table 3, the results of the detection method from the processes of calibration and testing are 

presented. 

Table 3 – Summary of results of the noise event detection method 

Process 
N° of flights 

log events 

Correct 

Detection 

% Correct 

Detection 

False 

Positives 

% False 

Positives 

Calibration (data days 1-2) 308 280 91 % 114 37 % 

Test (data day 3) 150 132 88 % 68 45 % 
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The efficiency obtained after the calibration of the thresholds is presented in Table 3, 

corresponding to a 91% of correct detections and a 37% of false positives. Moreover, for the testing 

process the percentage of correct detections decreased to 88% and, therefore,  false positives increased 

by 8%.  

An example showing the event detection process is shown in Figure 6. In the Figure, the red lines 

represent the automatic noise event detection. On the other hand, the black dotted lines correspond to 

each actual aircraft noise event according to the flight logs. This information was used for the further 

comparisons. 

 

 

 

Figure 6 – Detection of aircraft noise event for the period between 01:00 and 01:59 on 2012.12.24. 

 

3.2 ARTIFICIAL NEURAL NETWORKS: TRAINING AND VALIDATION 

As mentioned in section 2.5.2, a feed forward FF ANN was used to reduce the number of false 

positives after the first aircraft detection. The numbers N and M of neurons for the second and third 

(hidden) layers of the FF ANN were randomised and trained using the data measured on days N° 1 and 

2. Data measured on days 1 and 2 will be referred as training data. The configuration presenting the 

best performance using the training data consisted of 65-68-103-1 neurones, i.e., N and M were found 

as 68 and 103 respectively. In practice, this error corresponded to 18 out of 200 noise events wrongly 

classified by the network, where 15 events were missed take-off operations and 3 events were false 

positives. Therefore, the performance of the algorithm appending the ANN applied to the training data 

can be seen as a 91 % of succeeded detections.  

On the other hand, when applying the same criterion with the test data (see Table 4), while using the 

ANN is possible to reduce considerably the error associated to false positives presented on the first 

detection phase, decreasing from 68 events to just 5, which in percentage is equivalent to a reduction 

of 42%. However, this has an effectiveness cost on detection of real events of aircrafts according to the 

flight log because the ANN dismisses erroneously 13 events, decreasing the effectiveness in 9% from 

an 88% to a 79%. 
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Table 4 - Results of the noise event detection method before and after the use of the ANN. The data measured 

on day 3 (Tuesday 2012.12.25) was used.  

Process 
N° of flight 

log events 

Correct 

Detection 

% Correct 

Detection 

False 

Positives 

% False 

Positives 

Test Detection  150 132 88 % 68 45 % 

Test Detection + ANN 150 119 79 % 5 3 % 

4. FURTHER WORK 

An important part of the processing presented in the paper involved manual tasks . In order to 

enlarge the scope of this method to other noise monitoring points and further to other types of noise 

sources either a partial or total automation of the optimal detection thresholds would be desirable.  

To perform an analysis of sensitivity to the 65 input parameters fed into the ANN to mini mise, in 

this way, the amount of information required by the network to obtain similar results to those presented 

along this paper. 

5. CONCLUSIONS 

For the current study, noise data measured for three days at a point located 12 km away the SCEL 

Airport in Santiago were taken into account. During the observed period, 458 noise events 

corresponding to take-off (on thresholds 17L and 17R) which were analysed compared to official data. 

For the analysis two methods were merged for an automatic detection of aircraft noise events. First 

a multi-threshold algorithm was used to identify the potential aircraft noise events and then a second 

method was used to reduce the number of false positives based on different parameters. 

Considering the 32 measured acoustic descriptors, another 33 parameters were calculated and all of 

them were used to feed in an artificial neural network. Part of the noise data was used to train the 

network for recognising typical and non-typical patterns related to aircraft noise events. 

For the first method 4 parameters were needed: the time interval h in seconds and 3 other numeric 

thresholds. The time interval h used to differentiate the LEQ was calculated considering the parameter 

t10 defined in ISO 20906:2009. In this way, it was possible to determine h in function of the altitude, 

distance and velocity of the aircraft operation. The assessment of the 3 thresholds was determined in 

periods of one hour to take into account the high variability of the background noise. 

The integration of the 2 methods led to a performance characterised by a 79% of real aircraft noises 

and a 3% of false positives. 

To consider background noise variations at the monitoring point according to the time of the day, 

the optimum detection thresholds were assessed in intervals of one hour, finding great variability of 

optimal thresholds. The assessment of the thresholds per hour improved the performance of the 

algorithm. 

The low percentage of false positives obtained was due to the high effectiveness of the ANN used, 

which allows discarding great part of the erroneous information delivered by the initial detection 

method. However, the previous has a cost on the effectiveness of detecting real events of aircrafts, 

which decreases in a 9%. 
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